0
0
mirror of https://github.com/mpv-player/mpv.git synced 2024-09-20 20:03:10 +02:00
mpv/video/out/vo.c
wm4 d2bdb72b69 options: add a thread-safe way to notify option updates
So far, we had a thread-safe way to read options, but no option update
notification mechanism. Everything was funneled though the main thread's
central mp_option_change_callback() function. For example, if the
panscan options were changed, the function called vo_control() with
VOCTRL_SET_PANSCAN to manually notify the VO thread of updates. This
worked, but's pretty inconvenient. Most of these problems come from the
fact that MPlayer was written as a single-threaded program.

This commit works towards a more flexible mechanism. It adds an update
callback to m_config_cache (the thing that is already used for
thread-safe access of global options).

This alone would still be rather inconvenient, at least in context of
VOs. Add another mechanism on top of it that uses mp_dispatch_queue, and
takes care of some annoying synchronization issues. We extend
mp_dispatch_queue itself to make this easier and slightly more
efficient.

As a first application, use this to reimplement certain VO scaling and
renderer options. The update_opts() function translates these to the
"old" VOCTRLs, though.

An annoyingly subtle issue is that m_config_cache's destructor now
releases pending notifications, and must be released before the
associated dispatch queue. Otherwise, it could happen that option
updates during e.g. VO destruction queue or run stale entries, which is
not expected.

Rather untested. The singly-linked list code in dispatch.c is probably
buggy, and I bet some aspects about synchronization are not entirely
sane.
2017-08-22 15:50:33 +02:00

1386 lines
41 KiB
C

/*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with mpv. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <stdbool.h>
#include <pthread.h>
#include <math.h>
#include <libavutil/buffer.h>
#include "mpv_talloc.h"
#include "config.h"
#include "osdep/atomic.h"
#include "osdep/timer.h"
#include "osdep/threads.h"
#include "misc/dispatch.h"
#include "misc/rendezvous.h"
#include "options/options.h"
#include "misc/bstr.h"
#include "vo.h"
#include "aspect.h"
#include "input/input.h"
#include "options/m_config.h"
#include "common/msg.h"
#include "common/global.h"
#include "video/hwdec.h"
#include "video/mp_image.h"
#include "sub/osd.h"
#include "osdep/io.h"
#include "osdep/threads.h"
extern const struct vo_driver video_out_x11;
extern const struct vo_driver video_out_vdpau;
extern const struct vo_driver video_out_xv;
extern const struct vo_driver video_out_opengl;
extern const struct vo_driver video_out_opengl_cb;
extern const struct vo_driver video_out_null;
extern const struct vo_driver video_out_image;
extern const struct vo_driver video_out_lavc;
extern const struct vo_driver video_out_caca;
extern const struct vo_driver video_out_drm;
extern const struct vo_driver video_out_direct3d;
extern const struct vo_driver video_out_sdl;
extern const struct vo_driver video_out_vaapi;
extern const struct vo_driver video_out_wayland;
extern const struct vo_driver video_out_rpi;
extern const struct vo_driver video_out_tct;
const struct vo_driver *const video_out_drivers[] =
{
#if HAVE_RPI
&video_out_rpi,
#endif
#if HAVE_GL
&video_out_opengl,
#endif
#if HAVE_VDPAU
&video_out_vdpau,
#endif
#if HAVE_DIRECT3D
&video_out_direct3d,
#endif
#if HAVE_WAYLAND
&video_out_wayland,
#endif
#if HAVE_XV
&video_out_xv,
#endif
#if HAVE_SDL2
&video_out_sdl,
#endif
#if HAVE_VAAPI_X11
&video_out_vaapi,
#endif
#if HAVE_X11
&video_out_x11,
#endif
&video_out_null,
// should not be auto-selected
&video_out_image,
&video_out_tct,
#if HAVE_CACA
&video_out_caca,
#endif
#if HAVE_DRM
&video_out_drm,
#endif
#if HAVE_ENCODING
&video_out_lavc,
#endif
#if HAVE_GL
&video_out_opengl_cb,
#endif
NULL
};
struct vo_internal {
pthread_t thread;
struct mp_dispatch_queue *dispatch;
atomic_ullong dr_in_flight;
// --- The following fields are protected by lock
pthread_mutex_t lock;
pthread_cond_t wakeup;
bool need_wakeup;
bool terminate;
bool hasframe;
bool hasframe_rendered;
bool request_redraw; // redraw request from player to VO
bool want_redraw; // redraw request from VO to player
bool send_reset; // send VOCTRL_RESET
bool paused;
int queued_events; // event mask for the user
int internal_events; // event mask for us
int64_t nominal_vsync_interval;
int64_t vsync_interval;
int64_t *vsync_samples;
int num_vsync_samples;
int64_t num_total_vsync_samples;
int64_t prev_vsync;
int64_t base_vsync;
int drop_point;
double estimated_vsync_interval;
double estimated_vsync_jitter;
bool expecting_vsync;
int64_t num_successive_vsyncs;
int64_t flip_queue_offset; // queue flip events at most this much in advance
int64_t delayed_count;
int64_t drop_count;
bool dropped_frame; // the previous frame was dropped
struct vo_frame *current_frame; // last frame queued to the VO
int64_t wakeup_pts; // time at which to pull frame from decoder
bool rendering; // true if an image is being rendered
struct vo_frame *frame_queued; // should be drawn next
int req_frames; // VO's requested value of num_frames
uint64_t current_frame_id;
double display_fps;
int opt_framedrop;
};
extern const struct m_sub_options gl_video_conf;
static void forget_frames(struct vo *vo);
static void *vo_thread(void *ptr);
static bool get_desc(struct m_obj_desc *dst, int index)
{
if (index >= MP_ARRAY_SIZE(video_out_drivers) - 1)
return false;
const struct vo_driver *vo = video_out_drivers[index];
*dst = (struct m_obj_desc) {
.name = vo->name,
.description = vo->description,
.priv_size = vo->priv_size,
.priv_defaults = vo->priv_defaults,
.options = vo->options,
.options_prefix = vo->options_prefix,
.global_opts = vo->global_opts,
.hidden = vo->encode || !strcmp(vo->name, "opengl-cb"),
.p = vo,
};
return true;
}
// For the vo option
const struct m_obj_list vo_obj_list = {
.get_desc = get_desc,
.description = "video outputs",
.aliases = {
{"gl", "opengl"},
{"direct3d_shaders", "direct3d"},
{0}
},
.allow_unknown_entries = true,
.allow_trailer = true,
.disallow_positional_parameters = true,
.use_global_options = true,
};
static void dispatch_wakeup_cb(void *ptr)
{
struct vo *vo = ptr;
vo_wakeup(vo);
}
static void update_opts(void *p)
{
struct vo *vo = p;
if (m_config_cache_update(vo->opts_cache)) {
// "Legacy" update of video position related options.
if (vo->driver->control)
vo->driver->control(vo, VOCTRL_SET_PANSCAN, NULL);
}
if (vo->gl_opts_cache && m_config_cache_update(vo->gl_opts_cache))
{
// "Legacy" update of video GL renderer related options.
if (vo->driver->control)
vo->driver->control(vo, VOCTRL_UPDATE_RENDER_OPTS, NULL);
}
}
// Does not include thread- and VO uninit.
static void dealloc_vo(struct vo *vo)
{
forget_frames(vo); // implicitly synchronized
// These must be free'd before vo->in->dispatch.
talloc_free(vo->opts_cache);
talloc_free(vo->gl_opts_cache);
pthread_mutex_destroy(&vo->in->lock);
pthread_cond_destroy(&vo->in->wakeup);
talloc_free(vo);
}
static struct vo *vo_create(bool probing, struct mpv_global *global,
struct vo_extra *ex, char *name)
{
assert(ex->wakeup_cb);
struct mp_log *log = mp_log_new(NULL, global->log, "vo");
struct m_obj_desc desc;
if (!m_obj_list_find(&desc, &vo_obj_list, bstr0(name))) {
mp_msg(log, MSGL_ERR, "Video output %s not found!\n", name);
talloc_free(log);
return NULL;
};
struct vo *vo = talloc_ptrtype(NULL, vo);
*vo = (struct vo) {
.log = mp_log_new(vo, log, name),
.driver = desc.p,
.global = global,
.encode_lavc_ctx = ex->encode_lavc_ctx,
.input_ctx = ex->input_ctx,
.osd = ex->osd,
.monitor_par = 1,
.extra = *ex,
.probing = probing,
.in = talloc(vo, struct vo_internal),
};
talloc_steal(vo, log);
*vo->in = (struct vo_internal) {
.dispatch = mp_dispatch_create(vo),
.req_frames = 1,
.estimated_vsync_jitter = -1,
};
mp_dispatch_set_wakeup_fn(vo->in->dispatch, dispatch_wakeup_cb, vo);
pthread_mutex_init(&vo->in->lock, NULL);
pthread_cond_init(&vo->in->wakeup, NULL);
vo->opts_cache = m_config_cache_alloc(NULL, global, &vo_sub_opts);
vo->opts = vo->opts_cache->opts;
m_config_cache_set_dispatch_change_cb(vo->opts_cache, vo->in->dispatch,
update_opts, vo);
#if HAVE_GL
vo->gl_opts_cache = m_config_cache_alloc(NULL, global, &gl_video_conf);
m_config_cache_set_dispatch_change_cb(vo->gl_opts_cache, vo->in->dispatch,
update_opts, vo);
#endif
mp_input_set_mouse_transform(vo->input_ctx, NULL, NULL);
if (vo->driver->encode != !!vo->encode_lavc_ctx)
goto error;
vo->priv = m_config_group_from_desc(vo, vo->log, global, &desc, name);
if (!vo->priv)
goto error;
if (pthread_create(&vo->in->thread, NULL, vo_thread, vo))
goto error;
if (mp_rendezvous(vo, 0) < 0) { // init barrier
pthread_join(vo->in->thread, NULL);
goto error;
}
return vo;
error:
dealloc_vo(vo);
return NULL;
}
struct vo *init_best_video_out(struct mpv_global *global, struct vo_extra *ex)
{
struct m_obj_settings *vo_list = global->opts->vo->video_driver_list;
// first try the preferred drivers, with their optional subdevice param:
if (vo_list && vo_list[0].name) {
for (int n = 0; vo_list[n].name; n++) {
// Something like "-vo name," allows fallback to autoprobing.
if (strlen(vo_list[n].name) == 0)
goto autoprobe;
bool p = !!vo_list[n + 1].name;
struct vo *vo = vo_create(p, global, ex, vo_list[n].name);
if (vo)
return vo;
}
return NULL;
}
autoprobe:
// now try the rest...
for (int i = 0; video_out_drivers[i]; i++) {
const struct vo_driver *driver = video_out_drivers[i];
if (driver == &video_out_null)
break;
struct vo *vo = vo_create(true, global, ex, (char *)driver->name);
if (vo)
return vo;
}
return NULL;
}
static void terminate_vo(void *p)
{
struct vo *vo = p;
struct vo_internal *in = vo->in;
in->terminate = true;
}
void vo_destroy(struct vo *vo)
{
struct vo_internal *in = vo->in;
mp_dispatch_run(in->dispatch, terminate_vo, vo);
pthread_join(vo->in->thread, NULL);
dealloc_vo(vo);
}
// Wakeup the playloop to queue new video frames etc.
static void wakeup_core(struct vo *vo)
{
vo->extra.wakeup_cb(vo->extra.wakeup_ctx);
}
// Drop timing information on discontinuities like seeking.
// Always called locked.
static void reset_vsync_timings(struct vo *vo)
{
struct vo_internal *in = vo->in;
in->drop_point = 0;
in->base_vsync = 0;
in->expecting_vsync = false;
in->num_successive_vsyncs = 0;
}
static double vsync_stddef(struct vo *vo, int64_t ref_vsync)
{
struct vo_internal *in = vo->in;
double jitter = 0;
for (int n = 0; n < in->num_vsync_samples; n++) {
double diff = in->vsync_samples[n] - ref_vsync;
jitter += diff * diff;
}
return sqrt(jitter / in->num_vsync_samples);
}
#define MAX_VSYNC_SAMPLES 200
// Check if we should switch to measured average display FPS if it seems
// "better" then the system-reported one. (Note that small differences are
// handled as drift instead.)
static void check_estimated_display_fps(struct vo *vo)
{
struct vo_internal *in = vo->in;
bool use_estimated = false;
if (in->num_total_vsync_samples >= MAX_VSYNC_SAMPLES / 2 &&
in->estimated_vsync_interval <= 1e6 / 20.0 &&
in->estimated_vsync_interval >= 1e6 / 99.0)
{
for (int n = 0; n < in->num_vsync_samples; n++) {
if (fabs(in->vsync_samples[n] - in->estimated_vsync_interval)
>= in->estimated_vsync_interval / 4)
goto done;
}
double mjitter = vsync_stddef(vo, in->estimated_vsync_interval);
double njitter = vsync_stddef(vo, in->nominal_vsync_interval);
if (mjitter * 1.01 < njitter)
use_estimated = true;
done: ;
}
if (use_estimated == (in->vsync_interval == in->nominal_vsync_interval)) {
if (use_estimated) {
MP_VERBOSE(vo, "adjusting display FPS to a value closer to %.3f Hz\n",
1e6 / in->estimated_vsync_interval);
} else {
MP_VERBOSE(vo, "switching back to assuming display fps = %.3f Hz\n",
1e6 / in->nominal_vsync_interval);
}
}
in->vsync_interval = use_estimated ? (int64_t)in->estimated_vsync_interval
: in->nominal_vsync_interval;
}
// Attempt to detect vsyncs delayed/skipped by the driver. This tries to deal
// with strong jitter too, because some drivers have crap vsync timing.
static void vsync_skip_detection(struct vo *vo)
{
struct vo_internal *in = vo->in;
int window = 4;
int64_t t_r = in->prev_vsync, t_e = in->base_vsync, diff = 0, desync_early = 0;
for (int n = 0; n < in->drop_point; n++) {
diff += t_r - t_e;
t_r -= in->vsync_samples[n];
t_e -= in->vsync_interval;
if (n == window + 1)
desync_early = diff / window;
}
int64_t desync = diff / in->num_vsync_samples;
if (in->drop_point > window * 2 &&
llabs(desync - desync_early) >= in->vsync_interval * 3 / 4)
{
// Assume a drop. An underflow can technically speaking not be a drop
// (it's up to the driver what this is supposed to mean), but no reason
// to treat it differently.
in->base_vsync = in->prev_vsync;
in->delayed_count += 1;
in->drop_point = 0;
MP_STATS(vo, "vo-delayed");
}
if (in->drop_point > 10)
in->base_vsync += desync / 10; // smooth out drift
}
// Always called locked.
static void update_vsync_timing_after_swap(struct vo *vo)
{
struct vo_internal *in = vo->in;
int64_t now = mp_time_us();
int64_t prev_vsync = in->prev_vsync;
in->prev_vsync = now;
if (!in->expecting_vsync) {
reset_vsync_timings(vo);
return;
}
in->num_successive_vsyncs++;
if (in->num_successive_vsyncs <= 2)
return;
if (in->num_vsync_samples >= MAX_VSYNC_SAMPLES)
in->num_vsync_samples -= 1;
MP_TARRAY_INSERT_AT(in, in->vsync_samples, in->num_vsync_samples, 0,
now - prev_vsync);
in->drop_point = MPMIN(in->drop_point + 1, in->num_vsync_samples);
in->num_total_vsync_samples += 1;
if (in->base_vsync) {
in->base_vsync += in->vsync_interval;
} else {
in->base_vsync = now;
}
double avg = 0;
for (int n = 0; n < in->num_vsync_samples; n++)
avg += in->vsync_samples[n];
in->estimated_vsync_interval = avg / in->num_vsync_samples;
in->estimated_vsync_jitter =
vsync_stddef(vo, in->vsync_interval) / in->vsync_interval;
check_estimated_display_fps(vo);
vsync_skip_detection(vo);
MP_STATS(vo, "value %f jitter", in->estimated_vsync_jitter);
MP_STATS(vo, "value %f vsync-diff", in->vsync_samples[0] / 1e6);
}
// to be called from VO thread only
static void update_display_fps(struct vo *vo)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
if (in->internal_events & VO_EVENT_WIN_STATE) {
in->internal_events &= ~(unsigned)VO_EVENT_WIN_STATE;
pthread_mutex_unlock(&in->lock);
mp_read_option_raw(vo->global, "framedrop", &m_option_type_choice,
&in->opt_framedrop);
double display_fps;
mp_read_option_raw(vo->global, "display-fps", &m_option_type_double,
&display_fps);
if (display_fps <= 0)
vo->driver->control(vo, VOCTRL_GET_DISPLAY_FPS, &display_fps);
pthread_mutex_lock(&in->lock);
if (in->display_fps != display_fps) {
in->display_fps = display_fps;
MP_VERBOSE(vo, "Assuming %f FPS for display sync.\n", display_fps);
// make sure to update the player
in->queued_events |= VO_EVENT_WIN_STATE;
wakeup_core(vo);
}
in->nominal_vsync_interval = in->display_fps > 0 ? 1e6 / in->display_fps : 0;
in->vsync_interval = MPMAX(in->nominal_vsync_interval, 1);
}
pthread_mutex_unlock(&in->lock);
}
static void check_vo_caps(struct vo *vo)
{
int rot = vo->params->rotate;
if (rot) {
bool ok = rot % 90 ? false : (vo->driver->caps & VO_CAP_ROTATE90);
if (!ok) {
MP_WARN(vo, "Video is flagged as rotated by %d degrees, but the "
"video output does not support this.\n", rot);
}
}
}
static void run_reconfig(void *p)
{
void **pp = p;
struct vo *vo = pp[0];
struct mp_image_params *params = pp[1];
int *ret = pp[2];
struct vo_internal *in = vo->in;
m_config_cache_update(vo->opts_cache);
mp_image_params_get_dsize(params, &vo->dwidth, &vo->dheight);
talloc_free(vo->params);
vo->params = talloc_memdup(vo, params, sizeof(*params));
*ret = vo->driver->reconfig(vo, vo->params);
vo->config_ok = *ret >= 0;
if (vo->config_ok) {
check_vo_caps(vo);
} else {
talloc_free(vo->params);
vo->params = NULL;
}
pthread_mutex_lock(&in->lock);
talloc_free(in->current_frame);
in->current_frame = NULL;
forget_frames(vo);
reset_vsync_timings(vo);
pthread_mutex_unlock(&in->lock);
update_display_fps(vo);
}
int vo_reconfig(struct vo *vo, struct mp_image_params *params)
{
int ret;
void *p[] = {vo, params, &ret};
mp_dispatch_run(vo->in->dispatch, run_reconfig, p);
return ret;
}
static void run_control(void *p)
{
void **pp = p;
struct vo *vo = pp[0];
int request = (intptr_t)pp[1];
void *data = pp[2];
m_config_cache_update(vo->opts_cache);
int ret = vo->driver->control(vo, request, data);
if (pp[3])
*(int *)pp[3] = ret;
}
int vo_control(struct vo *vo, int request, void *data)
{
int ret;
void *p[] = {vo, (void *)(intptr_t)request, data, &ret};
mp_dispatch_run(vo->in->dispatch, run_control, p);
return ret;
}
// Run vo_control() without waiting for a reply.
// (Only works for some VOCTRLs.)
void vo_control_async(struct vo *vo, int request, void *data)
{
void *p[4] = {vo, (void *)(intptr_t)request, NULL, NULL};
void **d = talloc_memdup(NULL, p, sizeof(p));
switch (request) {
case VOCTRL_UPDATE_PLAYBACK_STATE:
d[2] = ta_xdup_ptrtype(d, (struct voctrl_playback_state *)data);
break;
case VOCTRL_KILL_SCREENSAVER:
case VOCTRL_RESTORE_SCREENSAVER:
break;
default:
abort(); // requires explicit support
}
mp_dispatch_enqueue_autofree(vo->in->dispatch, run_control, d);
}
// must be called locked
static void forget_frames(struct vo *vo)
{
struct vo_internal *in = vo->in;
in->hasframe = false;
in->hasframe_rendered = false;
in->drop_count = 0;
in->delayed_count = 0;
talloc_free(in->frame_queued);
in->frame_queued = NULL;
in->current_frame_id += VO_MAX_REQ_FRAMES + 1;
// don't unref current_frame; we always want to be able to redraw it
if (in->current_frame) {
in->current_frame->num_vsyncs = 0; // but reset future repeats
in->current_frame->display_synced = false; // mark discontinuity
}
}
// VOs which have no special requirements on UI event loops etc. can set the
// vo_driver.wait_events callback to this (and leave vo_driver.wakeup unset).
// This function must not be used or called for other purposes.
void vo_wait_default(struct vo *vo, int64_t until_time)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
if (!in->need_wakeup) {
struct timespec ts = mp_time_us_to_timespec(until_time);
pthread_cond_timedwait(&in->wakeup, &in->lock, &ts);
}
pthread_mutex_unlock(&in->lock);
}
// Called unlocked.
static void wait_vo(struct vo *vo, int64_t until_time)
{
struct vo_internal *in = vo->in;
if (vo->driver->wait_events) {
vo->driver->wait_events(vo, until_time);
} else {
vo_wait_default(vo, until_time);
}
pthread_mutex_lock(&in->lock);
in->need_wakeup = false;
pthread_mutex_unlock(&in->lock);
}
static void wakeup_locked(struct vo *vo)
{
struct vo_internal *in = vo->in;
pthread_cond_broadcast(&in->wakeup);
if (vo->driver->wakeup)
vo->driver->wakeup(vo);
in->need_wakeup = true;
}
// Wakeup VO thread, and make it check for new events with VOCTRL_CHECK_EVENTS.
// To be used by threaded VO backends.
void vo_wakeup(struct vo *vo)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
wakeup_locked(vo);
pthread_mutex_unlock(&in->lock);
}
// Whether vo_queue_frame() can be called. If the VO is not ready yet, the
// function will return false, and the VO will call the wakeup callback once
// it's ready.
// next_pts is the exact time when the next frame should be displayed. If the
// VO is ready, but the time is too "early", return false, and call the wakeup
// callback once the time is right.
// If next_pts is negative, disable any timing and draw the frame as fast as
// possible.
bool vo_is_ready_for_frame(struct vo *vo, int64_t next_pts)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
bool r = vo->config_ok && !in->frame_queued &&
(!in->current_frame || in->current_frame->num_vsyncs < 1);
if (r && next_pts >= 0) {
// Don't show the frame too early - it would basically freeze the
// display by disallowing OSD redrawing or VO interaction.
// Actually render the frame at earliest 50ms before target time.
next_pts -= (uint64_t)(0.050 * 1e6);
next_pts -= in->flip_queue_offset;
int64_t now = mp_time_us();
if (next_pts > now)
r = false;
if (!in->wakeup_pts || next_pts < in->wakeup_pts) {
in->wakeup_pts = next_pts;
// If we have to wait, update the vo thread's timer.
if (!r)
wakeup_locked(vo);
}
}
pthread_mutex_unlock(&in->lock);
return r;
}
// Direct the VO thread to put the currently queued image on the screen.
// vo_is_ready_for_frame() must have returned true before this call.
// Ownership of frame is handed to the vo.
void vo_queue_frame(struct vo *vo, struct vo_frame *frame)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
assert(vo->config_ok && !in->frame_queued &&
(!in->current_frame || in->current_frame->num_vsyncs < 1));
in->hasframe = true;
frame->frame_id = ++(in->current_frame_id);
in->frame_queued = frame;
in->wakeup_pts = frame->display_synced
? 0 : frame->pts + MPMAX(frame->duration, 0);
wakeup_locked(vo);
pthread_mutex_unlock(&in->lock);
}
// If a frame is currently being rendered (or queued), wait until it's done.
// Otherwise, return immediately.
void vo_wait_frame(struct vo *vo)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
while (in->frame_queued || in->rendering)
pthread_cond_wait(&in->wakeup, &in->lock);
pthread_mutex_unlock(&in->lock);
}
// Wait until realtime is >= ts
// called without lock
static void wait_until(struct vo *vo, int64_t target)
{
struct vo_internal *in = vo->in;
struct timespec ts = mp_time_us_to_timespec(target);
pthread_mutex_lock(&in->lock);
while (target > mp_time_us()) {
if (in->queued_events & VO_EVENT_LIVE_RESIZING)
break;
if (pthread_cond_timedwait(&in->wakeup, &in->lock, &ts))
break;
}
pthread_mutex_unlock(&in->lock);
}
static bool render_frame(struct vo *vo)
{
struct vo_internal *in = vo->in;
struct vo_frame *frame = NULL;
bool got_frame = false;
update_display_fps(vo);
pthread_mutex_lock(&in->lock);
if (in->frame_queued) {
talloc_free(in->current_frame);
in->current_frame = in->frame_queued;
in->frame_queued = NULL;
} else if (in->paused || !in->current_frame || !in->hasframe ||
(in->current_frame->display_synced && in->current_frame->num_vsyncs < 1) ||
!in->current_frame->display_synced)
{
goto done;
}
frame = vo_frame_ref(in->current_frame);
assert(frame);
if (frame->display_synced) {
frame->pts = 0;
frame->duration = -1;
}
int64_t now = mp_time_us();
int64_t pts = frame->pts;
int64_t duration = frame->duration;
int64_t end_time = pts + duration;
// Time at which we should flip_page on the VO.
int64_t target = frame->display_synced ? 0 : pts - in->flip_queue_offset;
// "normal" strict drop threshold.
in->dropped_frame = duration >= 0 && end_time < now;
in->dropped_frame &= !frame->display_synced;
in->dropped_frame &= !(vo->driver->caps & VO_CAP_FRAMEDROP);
in->dropped_frame &= (in->opt_framedrop & 1);
// Even if we're hopelessly behind, rather degrade to 10 FPS playback,
// instead of just freezing the display forever.
in->dropped_frame &= now - in->prev_vsync < 100 * 1000;
in->dropped_frame &= in->hasframe_rendered;
// Setup parameters for the next time this frame is drawn. ("frame" is the
// frame currently drawn, while in->current_frame is the potentially next.)
in->current_frame->repeat = true;
if (frame->display_synced) {
in->current_frame->vsync_offset += in->current_frame->vsync_interval;
in->dropped_frame |= in->current_frame->num_vsyncs < 1;
}
if (in->current_frame->num_vsyncs > 0)
in->current_frame->num_vsyncs -= 1;
bool use_vsync = in->current_frame->display_synced && !in->paused;
if (use_vsync && !in->expecting_vsync) // first DS frame in a row
in->prev_vsync = now;
in->expecting_vsync = use_vsync;
if (in->dropped_frame) {
in->drop_count += 1;
} else {
in->rendering = true;
in->hasframe_rendered = true;
int64_t prev_drop_count = vo->in->drop_count;
pthread_mutex_unlock(&in->lock);
wakeup_core(vo); // core can queue new video now
MP_STATS(vo, "start video-draw");
if (vo->driver->draw_frame) {
vo->driver->draw_frame(vo, frame);
} else {
vo->driver->draw_image(vo, mp_image_new_ref(frame->current));
}
MP_STATS(vo, "end video-draw");
wait_until(vo, target);
MP_STATS(vo, "start video-flip");
vo->driver->flip_page(vo);
MP_STATS(vo, "end video-flip");
pthread_mutex_lock(&in->lock);
in->dropped_frame = prev_drop_count < vo->in->drop_count;
in->rendering = false;
update_vsync_timing_after_swap(vo);
}
if (in->dropped_frame) {
MP_STATS(vo, "drop-vo");
} else {
in->request_redraw = false;
}
pthread_cond_broadcast(&in->wakeup); // for vo_wait_frame()
wakeup_core(vo);
got_frame = true;
done:
talloc_free(frame);
pthread_mutex_unlock(&in->lock);
return got_frame || (in->frame_queued && in->frame_queued->display_synced);
}
static void do_redraw(struct vo *vo)
{
struct vo_internal *in = vo->in;
if (!vo->config_ok)
return;
pthread_mutex_lock(&in->lock);
in->request_redraw = false;
bool full_redraw = in->dropped_frame;
struct vo_frame *frame = NULL;
if (!vo->driver->untimed)
frame = vo_frame_ref(in->current_frame);
if (frame)
in->dropped_frame = false;
struct vo_frame dummy = {0};
if (!frame)
frame = &dummy;
frame->redraw = !full_redraw; // unconditionally redraw if it was dropped
frame->repeat = false;
frame->still = true;
frame->pts = 0;
frame->duration = -1;
pthread_mutex_unlock(&in->lock);
if (vo->driver->draw_frame) {
vo->driver->draw_frame(vo, frame);
} else if ((full_redraw || vo->driver->control(vo, VOCTRL_REDRAW_FRAME, NULL) < 1)
&& frame->current)
{
vo->driver->draw_image(vo, mp_image_new_ref(frame->current));
}
vo->driver->flip_page(vo);
if (frame != &dummy)
talloc_free(frame);
}
static void *vo_thread(void *ptr)
{
struct vo *vo = ptr;
struct vo_internal *in = vo->in;
bool vo_paused = false;
mpthread_set_name("vo");
int r = vo->driver->preinit(vo) ? -1 : 0;
mp_rendezvous(vo, r); // init barrier
if (r < 0)
return NULL;
update_display_fps(vo);
vo_event(vo, VO_EVENT_WIN_STATE);
while (1) {
mp_dispatch_queue_process(vo->in->dispatch, 0);
if (in->terminate)
break;
vo->driver->control(vo, VOCTRL_CHECK_EVENTS, NULL);
bool working = render_frame(vo);
int64_t now = mp_time_us();
int64_t wait_until = now + (working ? 0 : (int64_t)1e9);
pthread_mutex_lock(&in->lock);
if (in->wakeup_pts) {
if (in->wakeup_pts > now) {
wait_until = MPMIN(wait_until, in->wakeup_pts);
} else {
in->wakeup_pts = 0;
wakeup_core(vo);
}
}
if (vo->want_redraw && !in->want_redraw) {
vo->want_redraw = false;
in->want_redraw = true;
wakeup_core(vo);
}
bool redraw = in->request_redraw;
bool send_reset = in->send_reset;
in->send_reset = false;
bool send_pause = in->paused != vo_paused;
vo_paused = in->paused;
pthread_mutex_unlock(&in->lock);
if (send_reset)
vo->driver->control(vo, VOCTRL_RESET, NULL);
if (send_pause)
vo->driver->control(vo, vo_paused ? VOCTRL_PAUSE : VOCTRL_RESUME, NULL);
if (wait_until > now && redraw) {
do_redraw(vo); // now is a good time
continue;
}
if (vo->want_redraw) // might have been set by VOCTRLs
wait_until = 0;
wait_vo(vo, wait_until);
}
forget_frames(vo); // implicitly synchronized
talloc_free(in->current_frame);
in->current_frame = NULL;
vo->driver->uninit(vo);
assert(atomic_load(&vo->in->dr_in_flight) == 0);
return NULL;
}
void vo_set_paused(struct vo *vo, bool paused)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
if (in->paused != paused) {
in->paused = paused;
if (in->paused && in->dropped_frame) {
in->request_redraw = true;
wakeup_core(vo);
}
reset_vsync_timings(vo);
wakeup_locked(vo);
}
pthread_mutex_unlock(&in->lock);
}
int64_t vo_get_drop_count(struct vo *vo)
{
pthread_mutex_lock(&vo->in->lock);
int64_t r = vo->in->drop_count;
pthread_mutex_unlock(&vo->in->lock);
return r;
}
void vo_increment_drop_count(struct vo *vo, int64_t n)
{
pthread_mutex_lock(&vo->in->lock);
vo->in->drop_count += n;
pthread_mutex_unlock(&vo->in->lock);
}
// Make the VO redraw the OSD at some point in the future.
void vo_redraw(struct vo *vo)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
if (!in->request_redraw) {
in->request_redraw = true;
in->want_redraw = false;
wakeup_locked(vo);
}
pthread_mutex_unlock(&in->lock);
}
bool vo_want_redraw(struct vo *vo)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
bool r = in->want_redraw;
pthread_mutex_unlock(&in->lock);
return r;
}
void vo_seek_reset(struct vo *vo)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
forget_frames(vo);
reset_vsync_timings(vo);
in->send_reset = true;
wakeup_locked(vo);
pthread_mutex_unlock(&in->lock);
}
// Return true if there is still a frame being displayed (or queued).
// If this returns true, a wakeup some time in the future is guaranteed.
bool vo_still_displaying(struct vo *vo)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&vo->in->lock);
int64_t now = mp_time_us();
int64_t frame_end = 0;
if (in->current_frame) {
frame_end = in->current_frame->pts + MPMAX(in->current_frame->duration, 0);
if (in->current_frame->display_synced)
frame_end = in->current_frame->num_vsyncs > 0 ? INT64_MAX : 0;
}
bool working = now < frame_end || in->rendering || in->frame_queued;
pthread_mutex_unlock(&vo->in->lock);
return working && in->hasframe;
}
// Whether at least 1 frame was queued or rendered since last seek or reconfig.
bool vo_has_frame(struct vo *vo)
{
return vo->in->hasframe;
}
static void run_query_format(void *p)
{
void **pp = p;
struct vo *vo = pp[0];
uint8_t *list = pp[1];
for (int format = IMGFMT_START; format < IMGFMT_END; format++)
list[format - IMGFMT_START] = vo->driver->query_format(vo, format);
}
// For each item in the list (allocated as uint8_t[IMGFMT_END - IMGFMT_START]),
// set the supported format flags.
void vo_query_formats(struct vo *vo, uint8_t *list)
{
void *p[] = {vo, list};
mp_dispatch_run(vo->in->dispatch, run_query_format, p);
}
// Calculate the appropriate source and destination rectangle to
// get a correctly scaled picture, including pan-scan.
// out_src: visible part of the video
// out_dst: area of screen covered by the video source rectangle
// out_osd: OSD size, OSD margins, etc.
// Must be called from the VO thread only.
void vo_get_src_dst_rects(struct vo *vo, struct mp_rect *out_src,
struct mp_rect *out_dst, struct mp_osd_res *out_osd)
{
if (!vo->params) {
*out_src = *out_dst = (struct mp_rect){0};
*out_osd = (struct mp_osd_res){0};
return;
}
mp_get_src_dst_rects(vo->log, vo->opts, vo->driver->caps, vo->params,
vo->dwidth, vo->dheight, vo->monitor_par,
out_src, out_dst, out_osd);
}
// flip_page[_timed] will be called offset_us microseconds too early.
// (For vo_vdpau, which does its own timing.)
// num_req_frames set the requested number of requested vo_frame.frames.
// (For vo_opengl interpolation.)
void vo_set_queue_params(struct vo *vo, int64_t offset_us, int num_req_frames)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
in->flip_queue_offset = offset_us;
in->req_frames = MPCLAMP(num_req_frames, 1, VO_MAX_REQ_FRAMES);
pthread_mutex_unlock(&in->lock);
}
int vo_get_num_req_frames(struct vo *vo)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
int res = in->req_frames;
pthread_mutex_unlock(&in->lock);
return res;
}
int64_t vo_get_vsync_interval(struct vo *vo)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
int64_t res = vo->in->vsync_interval > 1 ? vo->in->vsync_interval : -1;
pthread_mutex_unlock(&in->lock);
return res;
}
// Returns duration of a display refresh in seconds.
double vo_get_estimated_vsync_interval(struct vo *vo)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
double res = in->estimated_vsync_interval / 1e6;
pthread_mutex_unlock(&in->lock);
return res;
}
double vo_get_estimated_vsync_jitter(struct vo *vo)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
double res = in->estimated_vsync_jitter;
pthread_mutex_unlock(&in->lock);
return res;
}
// Get the time in seconds at after which the currently rendering frame will
// end. Returns positive values if the frame is yet to be finished, negative
// values if it already finished.
// This can only be called while no new frame is queued (after
// vo_is_ready_for_frame). Returns 0 for non-display synced frames, or if the
// deadline for continuous display was missed.
double vo_get_delay(struct vo *vo)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
assert (!in->frame_queued);
int64_t res = 0;
if (in->base_vsync && in->vsync_interval > 1 && in->current_frame) {
res = in->base_vsync;
int extra = !!in->rendering;
res += (in->current_frame->num_vsyncs + extra) * in->vsync_interval;
if (!in->current_frame->display_synced)
res = 0;
}
pthread_mutex_unlock(&in->lock);
return res ? (res - mp_time_us()) / 1e6 : 0;
}
void vo_discard_timing_info(struct vo *vo)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
reset_vsync_timings(vo);
pthread_mutex_unlock(&in->lock);
}
int64_t vo_get_delayed_count(struct vo *vo)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
int64_t res = vo->in->delayed_count;
pthread_mutex_unlock(&in->lock);
return res;
}
double vo_get_display_fps(struct vo *vo)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
double res = vo->in->display_fps;
pthread_mutex_unlock(&in->lock);
return res;
}
// Set specific event flags, and wakeup the playback core if needed.
// vo_query_and_reset_events() can retrieve the events again.
void vo_event(struct vo *vo, int event)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
if ((in->queued_events & event & VO_EVENTS_USER) != (event & VO_EVENTS_USER))
wakeup_core(vo);
if (event)
wakeup_locked(vo);
in->queued_events |= event;
in->internal_events |= event;
pthread_mutex_unlock(&in->lock);
}
// Check event flags set with vo_event(). Return the mask of events that was
// set and included in the events parameter. Clear the returned events.
int vo_query_and_reset_events(struct vo *vo, int events)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
int r = in->queued_events & events;
in->queued_events &= ~(unsigned)r;
pthread_mutex_unlock(&in->lock);
return r;
}
struct mp_image *vo_get_current_frame(struct vo *vo)
{
struct vo_internal *in = vo->in;
pthread_mutex_lock(&in->lock);
struct mp_image *r = NULL;
if (vo->in->current_frame)
r = mp_image_new_ref(vo->in->current_frame->current);
pthread_mutex_unlock(&in->lock);
return r;
}
static void destroy_frame(void *p)
{
struct vo_frame *frame = p;
for (int n = 0; n < frame->num_frames; n++)
talloc_free(frame->frames[n]);
}
// Return a new reference to the given frame. The image pointers are also new
// references. Calling talloc_free() on the frame unrefs all currently set
// image references. (Assuming current==frames[0].)
struct vo_frame *vo_frame_ref(struct vo_frame *frame)
{
if (!frame)
return NULL;
struct vo_frame *new = talloc_ptrtype(NULL, new);
talloc_set_destructor(new, destroy_frame);
*new = *frame;
for (int n = 0; n < frame->num_frames; n++) {
new->frames[n] = mp_image_new_ref(frame->frames[n]);
if (!new->frames[n])
abort(); // OOM on tiny allocs
}
new->current = new->num_frames ? new->frames[0] : NULL;
return new;
}
/*
* lookup an integer in a table, table must have 0 as the last key
* param: key key to search for
* returns translation corresponding to key or "to" value of last mapping
* if not found.
*/
int lookup_keymap_table(const struct mp_keymap *map, int key)
{
while (map->from && map->from != key)
map++;
return map->to;
}
struct free_dr_context {
struct vo *vo;
AVBufferRef *ref;
};
static void vo_thread_free(void *ptr)
{
struct free_dr_context *ctx = ptr;
unsigned long long v = atomic_fetch_add(&ctx->vo->in->dr_in_flight, -1);
assert(v); // value before sub is 0 - unexpected underflow.
av_buffer_unref(&ctx->ref);
talloc_free(ctx);
}
static void free_dr_buffer_on_vo_thread(void *opaque, uint8_t *data)
{
struct free_dr_context *ctx = opaque;
// The image could be unreffed even on the VO thread. In practice, this
// matters most on VO destruction.
if (pthread_equal(ctx->vo->in->thread, pthread_self())) {
vo_thread_free(ctx);
} else {
mp_dispatch_run(ctx->vo->in->dispatch, vo_thread_free, ctx);
}
}
struct get_image_cmd {
struct vo *vo;
int imgfmt, w, h, stride_align;
struct mp_image *res;
};
static void sync_get_image(void *ptr)
{
struct get_image_cmd *cmd = ptr;
struct vo *vo = cmd->vo;
cmd->res = vo->driver->get_image(vo, cmd->imgfmt, cmd->w, cmd->h,
cmd->stride_align);
if (!cmd->res)
return;
// We require exactly 1 AVBufferRef.
assert(cmd->res->bufs[0]);
assert(!cmd->res->bufs[1]);
// Apply some magic to get it free'd on the VO thread as well. For this to
// work, we create a dummy-ref that aliases the original ref, which is why
// the original ref must be writable in the first place. (A newly allocated
// image should be always writable of course.)
assert(mp_image_is_writeable(cmd->res));
struct free_dr_context *ctx = talloc_zero(NULL, struct free_dr_context);
*ctx = (struct free_dr_context){
.vo = vo,
.ref = cmd->res->bufs[0],
};
AVBufferRef *new_ref = av_buffer_create(ctx->ref->data, ctx->ref->size,
free_dr_buffer_on_vo_thread, ctx, 0);
if (!new_ref)
abort(); // tiny malloc OOM
cmd->res->bufs[0] = new_ref;
atomic_fetch_add(&vo->in->dr_in_flight, 1);
}
struct mp_image *vo_get_image(struct vo *vo, int imgfmt, int w, int h,
int stride_align)
{
if (!vo->driver->get_image)
return NULL;
struct get_image_cmd cmd = {
.vo = vo,
.imgfmt = imgfmt, .w = w, .h = h, .stride_align = stride_align,
};
mp_dispatch_run(vo->in->dispatch, sync_get_image, &cmd);
return cmd.res;
}