0
0
mirror of https://github.com/obsproject/obs-studio.git synced 2024-09-20 21:13:04 +02:00
obs-studio/libobs/data/lanczos_scale.effect
James Park 69c215345a libobs: Simplify YUV conversion
Currently several shaders need "DrawMatrix" techniques to support the
possibility that the input texture is a "YUV" format. Also, "DrawMatrix"
is overloaded for translation in both directions when it is written for
RGB to "YUV" only.

A cleaner solution is to handle "YUV" to RGB up-front as part of format
conversion, and ensure only RGB inputs reach the other shaders. This is
necessary to someday perform correct scale filtering without the cost of
redundant "YUV" conversions per texture tap.

A necessary prerequisite for this is to add conversion support for
VIDEO_FORMAT_I444, and that is now in place. There was already a hack in
place to cover VIDEO_FORMAT_Y800. All other "YUV" formats already have
conversion functions.

"DrawMatrix" has been removed from shaders that only supported "YUV" to
RGB conversions. It still exists in shaders that perform RGB to "YUV"
conversions, and the implementations have been sanitized accordingly.
2019-04-11 23:00:03 -07:00

174 lines
4.5 KiB
Plaintext

/*
* lanczos sharper
* note - this shader is adapted from the GPL bsnes shader, very good stuff
* there.
*/
uniform float4x4 ViewProj;
uniform texture2d image;
uniform float4x4 color_matrix;
uniform float2 base_dimension_i;
uniform float undistort_factor = 1.0;
sampler_state textureSampler
{
AddressU = Clamp;
AddressV = Clamp;
Filter = Linear;
};
struct VertData {
float4 pos : POSITION;
float2 uv : TEXCOORD0;
};
struct FragData {
float4 pos : POSITION;
float2 uv : TEXCOORD0;
float2 scale : TEXCOORD1;
};
FragData VSDefault(VertData v_in)
{
FragData vert_out;
vert_out.pos = mul(float4(v_in.pos.xyz, 1.0), ViewProj);
vert_out.uv = v_in.uv;
vert_out.scale = min(0.25 + abs(0.75 / mul(float4(1.0 / base_dimension_i.xy, 1.0, 1.0), ViewProj).xy), 1.0);
return vert_out;
}
float sinc(float x)
{
const float PIval = 3.1415926535897932384626433832795;
return sin(x * PIval) / (x * PIval);
}
float weight(float x, float radius)
{
float ax = abs(x);
if (x == 0.0)
return 1.0;
else if (ax < radius)
return sinc(x) * sinc(x / radius);
else
return 0.0;
}
float3 weight3(float x, float scale)
{
return float3(
weight((x * 2.0 + 0.0 * 2.0 - 3.0) * scale, 3.0),
weight((x * 2.0 + 1.0 * 2.0 - 3.0) * scale, 3.0),
weight((x * 2.0 + 2.0 * 2.0 - 3.0) * scale, 3.0));
}
float AspectUndistortX(float x, float a)
{
// The higher the power, the longer the linear part will be.
return (1.0 - a) * (x * x * x * x * x) + a * x;
}
float AspectUndistortU(float u)
{
// Normalize texture coord to -1.0 to 1.0 range, and back.
return AspectUndistortX((u - 0.5) * 2.0, undistort_factor) * 0.5 + 0.5;
}
float2 pixel_coord(float xpos, float ypos)
{
return float2(AspectUndistortU(xpos), ypos);
}
float4 pixel(float xpos, float ypos, bool undistort)
{
if (undistort)
return image.Sample(textureSampler, pixel_coord(xpos, ypos));
else
return image.Sample(textureSampler, float2(xpos, ypos));
}
float4 get_line(float ypos, float3 xpos1, float3 xpos2, float3 rowtap1,
float3 rowtap2, bool undistort)
{
return
pixel(xpos1.r, ypos, undistort) * rowtap1.r +
pixel(xpos1.g, ypos, undistort) * rowtap2.r +
pixel(xpos1.b, ypos, undistort) * rowtap1.g +
pixel(xpos2.r, ypos, undistort) * rowtap2.g +
pixel(xpos2.g, ypos, undistort) * rowtap1.b +
pixel(xpos2.b, ypos, undistort) * rowtap2.b;
}
float4 DrawLanczos(FragData v_in, bool undistort)
{
float2 stepxy = base_dimension_i;
float2 pos = v_in.uv + stepxy * 0.5;
float2 f = frac(pos / stepxy);
float3 rowtap1 = weight3((1.0 - f.x) / 2.0, v_in.scale.x);
float3 rowtap2 = weight3((1.0 - f.x) / 2.0 + 0.5, v_in.scale.x);
float3 coltap1 = weight3((1.0 - f.y) / 2.0, v_in.scale.y);
float3 coltap2 = weight3((1.0 - f.y) / 2.0 + 0.5, v_in.scale.y);
/* make sure all taps added together is exactly 1.0, otherwise some
* (very small) distortion can occur */
float suml = rowtap1.r + rowtap1.g + rowtap1.b + rowtap2.r + rowtap2.g + rowtap2.b;
float sumc = coltap1.r + coltap1.g + coltap1.b + coltap2.r + coltap2.g + coltap2.b;
rowtap1 /= suml;
rowtap2 /= suml;
coltap1 /= sumc;
coltap2 /= sumc;
float2 xystart = (-2.5 - f) * stepxy + pos;
float3 xpos1 = float3(xystart.x , xystart.x + stepxy.x , xystart.x + stepxy.x * 2.0);
float3 xpos2 = float3(xystart.x + stepxy.x * 3.0, xystart.x + stepxy.x * 4.0, xystart.x + stepxy.x * 5.0);
return
get_line(xystart.y , xpos1, xpos2, rowtap1, rowtap2, undistort) * coltap1.r +
get_line(xystart.y + stepxy.y , xpos1, xpos2, rowtap1, rowtap2, undistort) * coltap2.r +
get_line(xystart.y + stepxy.y * 2.0, xpos1, xpos2, rowtap1, rowtap2, undistort) * coltap1.g +
get_line(xystart.y + stepxy.y * 3.0, xpos1, xpos2, rowtap1, rowtap2, undistort) * coltap2.g +
get_line(xystart.y + stepxy.y * 4.0, xpos1, xpos2, rowtap1, rowtap2, undistort) * coltap1.b +
get_line(xystart.y + stepxy.y * 5.0, xpos1, xpos2, rowtap1, rowtap2, undistort) * coltap2.b;
}
float4 PSDrawLanczosRGBA(FragData v_in, bool undistort) : TARGET
{
return DrawLanczos(v_in, undistort);
}
float4 PSDrawLanczosMatrix(FragData v_in) : TARGET
{
float3 rgb = DrawLanczos(v_in, false).rgb;
float3 yuv = mul(float4(saturate(rgb), 1.0), color_matrix).xyz;
return float4(yuv, 1.0);
}
technique Draw
{
pass
{
vertex_shader = VSDefault(v_in);
pixel_shader = PSDrawLanczosRGBA(v_in, false);
}
}
technique DrawUndistort
{
pass
{
vertex_shader = VSDefault(v_in);
pixel_shader = PSDrawLanczosRGBA(v_in, true);
}
}
technique DrawMatrix
{
pass
{
vertex_shader = VSDefault(v_in);
pixel_shader = PSDrawLanczosMatrix(v_in);
}
}