0
0
mirror of https://github.com/OpenVPN/openvpn3.git synced 2024-09-19 19:52:15 +02:00
openvpn3/openvpn/crypto/crypto_aead.hpp
Arne Schwabe c78aaecad7 Differentiate Packet ID types into data channel and control channel ids
Data channel packet ids (in the formats that OpenVPN 3.x supports)
are plain 32 or 64 bit ids while control channel is a 32 bit time + 32
bit counter id. Seperate these more clearly and let CBC mode use the
same Packet ID implementation that AEAD mode uses.

Also add more unit tests related to data channel tests packets by
adapting the control channel test where applicable and add a few more
related to packet id wrapping

Signed-off-by: Arne Schwabe <arne@openvpn.net>
2024-09-11 13:23:31 +00:00

425 lines
14 KiB
C++

// OpenVPN -- An application to securely tunnel IP networks
// over a single port, with support for SSL/TLS-based
// session authentication and key exchange,
// packet encryption, packet authentication, and
// packet compression.
//
// Copyright (C) 2012-2022 OpenVPN Inc.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License Version 3
// as published by the Free Software Foundation.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program in the COPYING file.
// If not, see <http://www.gnu.org/licenses/>.
// OpenVPN AEAD data channel interface
#ifndef OPENVPN_CRYPTO_CRYPTO_AEAD_H
#define OPENVPN_CRYPTO_CRYPTO_AEAD_H
#include <cstring> // for std::memcpy, std::memset
#include <openvpn/common/size.hpp>
#include <openvpn/common/exception.hpp>
#include <openvpn/common/clamp_typerange.hpp>
#include <openvpn/buffer/buffer.hpp>
#include <openvpn/frame/frame.hpp>
#include <openvpn/crypto/static_key.hpp>
#include <openvpn/crypto/packet_id_data.hpp>
#include <openvpn/log/sessionstats.hpp>
#include <openvpn/crypto/cryptodc.hpp>
// Sample AES-GCM head:
// 48000001 00000005 7e7046bd 444a7e28 cc6387b1 64a4d6c1 380275a...
// [ OP32 ] [seq # ] [ auth tag ] [ payload ... ]
// [4-byte
// IV head]
using openvpn::numeric_util::clamp_to_default;
namespace openvpn::AEAD {
OPENVPN_EXCEPTION(aead_error);
template <typename CRYPTO_API>
class Crypto : public CryptoDCInstance
{
class Nonce
{
public:
Nonce()
{
static_assert(4 + CRYPTO_API::CipherContextAEAD::IV_LEN == sizeof(data),
"AEAD IV_LEN inconsistency");
ad_op32 = false;
std::memset(data, 0, sizeof(data));
}
/**
* Sets the IV tail for AEAD operations
*
* The IV for AEAD ciphers (both AES-GCM and Chacha20-Poly1305) consists of 96 bits/12 bytes
* (It then gets concatenated with internal 32 bits for block counter to form a 128 bit counter for the
* encryption).
*
* Since we only use 4 bytes (32 bit packet ID) or 8 bytes (64 bit packet ID) on the wire, we
* fill out the rest of the IV with pseudorandom bytes that come from of the negotiated key for the
* HMAC key (this key is not used by AEAD ciphers, so we reuse it for this purpose in AEAD mode).
*/
void set_tail(const StaticKey &sk, bool use64bitcounter)
{
size_t implicit_iv_len = use64bitcounter ? 4 : 8;
if (sk.size() < implicit_iv_len)
throw aead_error("insufficient key material for nonce tail");
/* 4 bytes opcode + 4-8 bytes on wire IV */
size_t implicit_iv_offset = data_offset_pkt_id + (12 - implicit_iv_len);
std::memcpy(data + implicit_iv_offset, sk.data(), implicit_iv_len);
}
// for encrypt
Nonce(const Nonce &ref, PacketIDDataSend &pid_send, const unsigned char *op32)
{
/** Copy op code and tail of packet ID */
std::memcpy(data, ref.data, sizeof(data));
Buffer buf(data + data_offset_pkt_id, PacketIDData::long_id_size, false);
pid_send.write_next(buf);
if (op32)
{
ad_op32 = true;
std::memcpy(data, op32, op32_size);
}
else
ad_op32 = false;
}
// for encrypt
void prepend_ad(Buffer &buf, const PacketIDDataSend &pid_send) const
{
buf.prepend(data + data_offset_pkt_id, pid_send.length());
}
// for decrypt
Nonce(const Nonce &ref, const PacketIDDataReceive &recv_pid, Buffer &buf, const unsigned char *op32)
{
/* Copy opcode and tail of packet ID */
std::memcpy(data, ref.data, sizeof(data));
/* copy dynamic packet of IV into */
buf.read(data + data_offset_pkt_id, recv_pid.length());
if (op32)
{
ad_op32 = true;
std::memcpy(data, op32, op32_size);
}
else
ad_op32 = false;
}
// for decrypt
bool verify_packet_id(PacketIDDataReceive &pid_recv, const PacketIDControl::time_t now)
{
Buffer buf(data + data_offset_pkt_id, PacketIDData::long_id_size, true);
const PacketIDData pid = pid_recv.read_next(buf);
return pid_recv.test_add(pid, now); // verify packet ID
}
const unsigned char *iv() const
{
return data + data_offset_pkt_id;
}
const unsigned char *ad() const
{
return ad_op32 ? data : data + data_offset_pkt_id;
}
size_t ad_len(const PacketIDDataSend &pid_send) const
{
return (ad_op32 ? op32_size : 0) + pid_send.length();
}
size_t ad_len(const PacketIDDataReceive &pid_recv) const
{
return (ad_op32 ? op32_size : 0) + pid_recv.length();
}
private:
bool ad_op32; // true if AD (authenticated data) includes op32 opcode
// Sample data:
// [ OP32 (optional) ] [ pkt ID ] [ nonce tail ]
// [ 48 00 00 01 ] [ 00 00 00 05 ] [ 7f 45 64 db 33 5b 6c 29 ]
unsigned char data[16];
static constexpr std::size_t data_offset_pkt_id = 4;
static constexpr std::size_t op32_size = 4;
};
struct Encrypt
{
typename CRYPTO_API::CipherContextAEAD impl;
Nonce nonce;
PacketIDDataSend pid_send{false};
BufferAllocated work;
};
struct Decrypt
{
typename CRYPTO_API::CipherContextAEAD impl;
Nonce nonce;
PacketIDDataReceive pid_recv{};
BufferAllocated work;
};
public:
typedef CryptoDCInstance Base;
Crypto(SSLLib::Ctx libctx_arg,
CryptoDCSettingsData dc_settings_data,
const Frame::Ptr &frame_arg,
const SessionStats::Ptr &stats_arg)
: dc_settings(dc_settings_data),
frame(frame_arg),
stats(stats_arg),
libctx(libctx_arg)
{
}
// Encrypt/Decrypt
// returns true if packet ID is close to wrapping
bool encrypt(BufferAllocated &buf, const unsigned char *op32) override
{
// only process non-null packets
if (buf.size())
{
// build nonce/IV/AD
Nonce nonce(e.nonce, e.pid_send, op32);
// encrypt to work buf
frame->prepare(Frame::ENCRYPT_WORK, e.work);
if (e.work.max_size() < buf.size())
throw aead_error("encrypt work buffer too small");
unsigned char *work_data = e.work.write_alloc(buf.size());
unsigned char *auth_tag;
unsigned char *auth_tag_tmp = nullptr;
// alloc auth tag in buffer where it needs to be
// Create a temporary auth tag at the end if the implementation and mode require it
if (dc_settings.aeadTagAtTheEnd())
{
auth_tag = e.work.write_alloc(CRYPTO_API::CipherContextAEAD::AUTH_TAG_LEN);
}
else
{
auth_tag = e.work.prepend_alloc(CRYPTO_API::CipherContextAEAD::AUTH_TAG_LEN);
if (e.impl.requires_authtag_at_end())
{
auth_tag_tmp = e.work.write_alloc(CRYPTO_API::CipherContextAEAD::AUTH_TAG_LEN);
}
}
// encrypt
e.impl.encrypt(buf.data(), work_data, buf.size(), nonce.iv(), auth_tag, nonce.ad(), nonce.ad_len(e.pid_send));
if (auth_tag_tmp)
{
/* move the auth tag to the front */
std::memcpy(auth_tag, auth_tag_tmp, CRYPTO_API::CipherContextAEAD::AUTH_TAG_LEN);
/* Ignore the auth tag at the end */
e.work.inc_size(-CRYPTO_API::CipherContextAEAD::AUTH_TAG_LEN);
}
buf.swap(e.work);
// prepend additional data
nonce.prepend_ad(buf, e.pid_send);
}
return e.pid_send.wrap_warning();
}
Error::Type decrypt(BufferAllocated &buf, const std::time_t now, const unsigned char *op32) override
{
// only process non-null packets
if (buf.size())
{
// get nonce/IV/AD
Nonce nonce(d.nonce, d.pid_recv, buf, op32);
// get auth tag if it is at the front. If the auth tag is at the end
// the decrypt function will just treat it as part of the input
unsigned char *auth_tag = nullptr;
if (!dc_settings.aeadTagAtTheEnd())
{
auth_tag = buf.read_alloc(CRYPTO_API::CipherContextAEAD::AUTH_TAG_LEN);
}
// initialize work buffer.
frame->prepare(Frame::DECRYPT_WORK, d.work);
if (d.work.max_size() < buf.size())
throw aead_error("decrypt work buffer too small");
if (auth_tag && e.impl.requires_authtag_at_end())
{
unsigned char *auth_tag_end = buf.write_alloc(CRYPTO_API::CipherContextAEAD::AUTH_TAG_LEN);
std::memcpy(auth_tag_end, auth_tag, CRYPTO_API::CipherContextAEAD::AUTH_TAG_LEN);
auth_tag = nullptr;
}
// decrypt from buf -> work
if (!d.impl.decrypt(buf.c_data(), d.work.data(), buf.size(), nonce.iv(), auth_tag, nonce.ad(), nonce.ad_len(d.pid_recv)))
{
buf.reset_size();
return Error::DECRYPT_ERROR;
}
if (dc_settings.aeadTagAtTheEnd() || e.impl.requires_authtag_at_end())
{
d.work.set_size(buf.size() - CRYPTO_API::CipherContextAEAD::AUTH_TAG_LEN);
}
else
{
d.work.set_size(buf.size());
}
// verify packet ID
if (!nonce.verify_packet_id(d.pid_recv, now))
{
buf.reset_size();
return Error::REPLAY_ERROR;
}
// return cleartext result in buf
buf.swap(d.work);
}
return Error::SUCCESS;
}
// Initialization
// TODO: clamp_to_default probably will cause an error further along if triggered, investigate
void init_cipher(StaticKey &&encrypt_key, StaticKey &&decrypt_key) override
{
e.impl.init(libctx,
dc_settings.cipher(),
encrypt_key.data(),
clamp_to_default<unsigned int>(encrypt_key.size(), 0),
CRYPTO_API::CipherContextAEAD::ENCRYPT);
d.impl.init(libctx,
dc_settings.cipher(),
decrypt_key.data(),
clamp_to_default<unsigned int>(decrypt_key.size(), 0),
CRYPTO_API::CipherContextAEAD::DECRYPT);
}
void init_hmac(StaticKey &&encrypt_key,
StaticKey &&decrypt_key) override
{
e.nonce.set_tail(encrypt_key, dc_settings.use64bitPktCounter());
d.nonce.set_tail(decrypt_key, dc_settings.use64bitPktCounter());
}
void init_pid(const char *recv_name,
const int recv_unit,
const SessionStats::Ptr &recv_stats_arg) override
{
e.pid_send = PacketIDDataSend{dc_settings.use64bitPktCounter()};
d.pid_recv.init(recv_name, recv_unit, dc_settings.use64bitPktCounter(), recv_stats_arg);
}
// Indicate whether or not cipher/digest is defined
unsigned int defined() const override
{
unsigned int ret = CRYPTO_DEFINED;
// AEAD mode doesn't use HMAC, but we still indicate HMAC_DEFINED
// because we want to use the HMAC keying material for the AEAD nonce tail.
if (CryptoAlgs::defined(dc_settings.cipher()))
ret |= (CIPHER_DEFINED | HMAC_DEFINED);
return ret;
}
bool consider_compression(const CompressContext &comp_ctx) override
{
return true;
}
// Rekeying
void rekey(const typename Base::RekeyType type) override
{
}
private:
CryptoDCSettingsData dc_settings;
Frame::Ptr frame;
SessionStats::Ptr stats;
SSLLib::Ctx libctx;
Encrypt e;
Decrypt d;
};
template <typename CRYPTO_API>
class CryptoContext : public CryptoDCContext
{
public:
typedef RCPtr<CryptoContext> Ptr;
CryptoContext(SSLLib::Ctx libctx_arg,
CryptoDCSettingsData dc_settings_data,
const Frame::Ptr &frame_arg,
const SessionStats::Ptr &stats_arg)
: CryptoDCContext(dc_settings_data.key_derivation()),
dc_settings(std::move(dc_settings_data)),
frame(frame_arg),
stats(stats_arg),
libctx(libctx_arg)
{
/* Check if the cipher is legal for AEAD and otherwise throw */
legal_dc_cipher(dc_settings.cipher());
dc_settings.set_digest(CryptoAlgs::NONE);
}
CryptoDCInstance::Ptr new_obj(const unsigned int key_id) override
{
return new Crypto<CRYPTO_API>(libctx, dc_settings, frame, stats);
}
// cipher/HMAC/key info
CryptoDCSettingsData crypto_info() override
{
return dc_settings;
}
// Info for ProtoContext::link_mtu_adjust
size_t encap_overhead() const override
{
return CRYPTO_API::CipherContextAEAD::AUTH_TAG_LEN;
}
private:
CryptoDCSettingsData dc_settings;
Frame::Ptr frame;
SessionStats::Ptr stats;
SSLLib::Ctx libctx;
};
} // namespace openvpn::AEAD
#endif